La División Sintética es un procedimiento abreviado para realizar la división de un polinomio P(x) = anxn + an - 1xn - 1 +...+ a1x + a0 de grado n, esto es an
0, entre un polinomio lineal x - c. El procedimiento para realizar esta división es muy simple, primero se toman todos los coeficientes del polinomio P(x) y la constante c, con estos se construye una especie de ''casita'' que ayudará en el proceso


Lo primero es ''bajar'' el coeficiente an, a este coeficiente también lo denotamos por bn - 1, luego se multiplica por la constante c, el resultado se coloca en la segunda columna y se suma al siguiente coeficientean - 1, al resultado lo denotamos bn - 2

Este último resultado se multiplica nuevamente por c y se le suma al coeficiente an - 2 y el proceso se repite hasta llegar a a0. Los resultados parciales que se obtienen se denotan por bn - 1, bn - 2, ... , b1, b0(se inicia con bn - 1 pues el cociente tiene un grado menos que el dividendo), y el último valor obtenido se denota por r, pues es el residuo de la división, de esta manera lo que se obtiene es

Así, el cociente de la división de P(x) por x - c es bn - 1xn - 1 + bn - 2xn - 2 + ... + b1x1 + b0 con un residuo r, en donde los coeficientes se detallan como
bn - 1 = an
bn - 2 = cbn - 1 + an - 1
bn - 3 = cbn - 2 + an - 2

b1 = cb2 + a2
b0 = cb1 + a1
r = cb0 + a0
EJEMPLO 1 (División Sintética)
Realice la división de P(x) = 3x4 + 2x3 - x2 + 4x + 2 entre x + 2.
Realice la división de P(x) = 3x4 + 2x3 - x2 + 4x + 2 entre x + 2.
Solución
Al realizar el algoritmo de la división sintética con los coeficientes de P(x) y -2 como valor de c.
Así, el cociente de la división de P(x) entre x + 2 es 3x3 - 4x2 + 7x - 10 y se obtiene un residuo r = 22.
1.2.3. Desigualdades Lineales, Cuadráticas y de Valor Absoluto.
Desigualdades Lineales
Una inecuación o desigualdad lineal es lo mismo que una ecuación lineal pero cambiando el signo de igualdad por signo(s) de desigualdad.
Los signos de desigualdad son
Ejemplo 1) Resolver: 3 > x - 8.
Sumando la misma cantidad a ambos lados:
3 > x - 8
3 + 8 > x - 8 + 8
11 > x
x < 11
El conjunto solución es: (-∞, 11).
Ejemplo 2) Resolver: 2x-5 < 7
Solución:
2x-5 < 7 desigualdad original
2x-5+5 < 7+5 sumar 5 a ambos miembros
2x < 12 simplificar
½ (2x) < ½ (12) multiplicar a ambos miembros por ½
x < 6 simplificar
El conjunto solución es: (-∞, 6).
Ejemplo 3)

Ejemplo 4) Resolver: -3 ≤ 2-5x ≤ 12
Solución:
-3 ≤ 2-5x ≤ 12 Desigualdad original
-3-2 ≤ 2-5x-2 ≤ 12-2 restar 2
-5 ≤ -5x ≤ 10 Simplificar
- (1/5) (-5) ≥ - (1/5) (-5x) ≥ - (1/5) (10) Multiplicar a ambos miembros por –(1/5) e invertir ambas . desigualdades.
1 ≥ x ≥ -2 Simplificar
El conjunto solución es [-2,1].
Desigualdades que Envuelven Dos Posibles Soluciones (Valor Absoluto)
Hay desigualdades que envuelven dos posibles soluciones, una positiva y otra negativa.
Ejemplo 5) Resolver | 10x - 2|
9
Ejemplo 5) Resolver | 10x - 2|

· 10x - 2
-9
10x
-9 +2
10x
-7
10x/10
-7/10
x
-7/10

10x

10x

10x/10

x

· 10x - 2
9
10x
9 + 2
10x
11
10x/10
11/10
x
11/10

10x

10x

10x/10

x

Ejemplo 6) Resolver: | x-3 | ≤ 2
Solución: usando la segunda propiedad de las desigualdades y los valores absolutos , puede describirse la desigualdad original como la desigualdad doble.
-2 ≤ x - 3 ≤ 2 Escribir como desigualdad doble
-2 + 3 ≤ x - 3 + 3 ≤ 2 + 3 Sumar 3
1 ≤ x ≤ 5 Simplificar
El conjunto solución de la desigualdad original es [1,5].
Desigualdades Cuadráticas
Ejemplo 7) Resolver: x2 < x+6
Solución:
x2 < x + 6 Desigualdad original
x2 - x - 6 < 0 Escribir en forma usual
(x – 3)(x + 2) < 0 Factorizar
El polinomio x2 - x - 6 tiene los ceros x = -2 y x = 3, por tanto tiene los intervalos prueba (-∞,-2),(-2,3) y (3,∞).
La solución de la desigualdad original es (-2, 3).
No hay comentarios:
Publicar un comentario